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Abstract

In this paper we compare the maximums of two independent and heterogeneous

samples each following Kumaraswamy-G distribution with the same and the dif-

ferent parent distribution functions using the concept of matrix majorization. The
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when each sampling unit experiences a random shock. The implications of the
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1 Introduction

Order statistics have a prominent role in reliability theory, life testing, actuar-

ial science, auction theory, hydrology and many other related and unrelated areas. If

X1:n ≤ X2:n ≤ . . . ≤ Xn:n denote the order statistics corresponding to the random vari-

ables X1, X2, . . . , Xn, then the sample minimum and sample maximum correspond to

the smallest and the largest order statistics X1:n and Xn:n respectively. The results of

stochastic comparisons of the order statistics (largely on the smallest and the largest

order statistics) can be seen in Dykstra et al. (1997), Fang and Balakrishnan (2018),

Fang and Zhang (2015), Zhao and Balakrishnan (2011), Torrado and Kochar (2015),

Balakrishnan et al. (2014), Li and Li (2015), Kundu et al. (2016), Kundu and Chowd-

hury (2016, 2018), Chowdhury and Kundu (2017) and the references there in for a variety

of parametric models. The assumption in the papers lies in the fact that each of the order

statistics X1:n, X2:n, . . . Xn:n occurs with certainty and the comparison is carried out on

the minimums or the maximums of the order statistics. Now, it may so happen that the

order statistics experience random shocks which may or may not result in its occurence

and it is of interest to compare two such systems stochastically with respect to vector

or matrix majorization. The model could arise in the context of reliability and actuarial

sciences as described next.

Let us assume a parallel system consists of n independent components in working condi-

tions. Each component of the system receives a shock which may cause the component to

fail. Let the random variable (rv) Ti denote lifetime of the ith component in the system

which experiences a random shock at binging. Also suppose that Ii denote independent

Bernoulli rvs, independent of the Xis, with E(Ii) = pi, will be called shock parameter

hereafter. Then, the random shock impacts the ith component (Ii = 1) with probabil-

ity pi or doesn’t impact the ith component (Ii = 0) with probability 1 − pi. Hence,

the rv Xi = IiTi corresponds to the lifetime of the ith component in a system under

shock. Fang and Balakrishnan (2018) has compared two such systems with generalized

Birnbaum-Saunders components. Similar comparisons are carried out in the context of

insurance where largest or smallest claim amounts in a portfolio of risks are compared

stochastically. One may refer to Barmalzanet al. (2017), and Balakrishnan et al. (2018

for more detail.

Kumaraswamy (1980) proposed a new two-parameter probability distribution, known

as Kumaraswamy’s distribution (Kw distribution) on (0,1) with hydrological applica-

tions. The distribution does not seem to be popular in the statistical literature and has

seen only limited use and development in the hydrological and related literature (see

Sundar and Subbiah (1989), Fletcher and Ponnambalam (1996), Seifi et al. (1989) and
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Ganji et al. (2006)). A recent paper by Jones (2008) has explored the background and

genesis of the Kw distribution and discussed it’s similarities to the beta distribution

along with a number of advantages in terms of tractability. A random variable X is said

to have Kw distribution with parameters (α, β), written as Kw(α, β), if the cumulative

distribution function (cdf) of X is given by

K(x) = 1− (1− xα)β , 0 < x < 1, α > 0, β > 0,

where α and β are the shape parameters. Generalizing this distribution, Cordeiro and

de Castro (2011) have proposed a new family of generalized distributions, called Ku-

maraswamy generalized family of distributions (called Kw-G distribution). For a random

variable X with cdf F (x), the distribution function G(x) of the Kw-G random variable

is defined by

G(x) = 1− (1− (F (x))α)β , x ∈ <, α > 0, β > 0. (1.1)

The Kw-G distribution, written as Kw-G(α, β, F ), is shown to be used for the censored

data quite effectively and has the ability to fit skewed data better than any existing

distributions. Each of the Kw-G distributions can be obtained from a specified parent

cdf F , e.g. the Kw-Weibull (Kw-W), Kw-gamma (Kw-Ga) and Kw-Gumbel (Kw-Gu)

distributions can be obtained by taking F (x) as the cdf of the Weibull, gamma and

Gumbel distributions, respectively. Recently, Kundu and Chowdhury (2018) have stud-

ied the stochastic properties of minimum order statistics for Kw-G(α, β, F ) model. In

this paper, we take the work a step forward and compare maximums of two independent

heterogeneous samples from Kw-G random variables with both common (F ) and differ-

ent (F1 and F2) homogenous parent cdf when each of the units in the sample experiences

a random shock.

The rest of the paper is organized as follows. In Section 2, we have given the

required notations, definitions and some useful lemmas which are used throughout the

paper. Results related to usual stochastic ordering between two independent heteroge-

neous samples with associated random shock are derived in Section 3. One application

of the results is provided in Section 4. Finally, Section 5 concludes the paper.

Throughout the paper, the word increasing (resp. decreasing) and nondecreasing

(resp. nonincreasing) are used interchangeably, and <+ denotes the set of positive real

numbers {x : 0 < x < ∞}. We also write a
sign
= b to mean that a and b have the same

sign and h−1 denotes inverse of the function h.
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2 Notations, Definitions and Preliminaries

Let X and Y be two absolutely continuous random variables with survival functions

FX (·) and F Y (·) respectively.

In order to compare different order statistics, stochastic orders are used for fair and

reasonable comparison. Different kinds of stochastic orders are developed and studied

in the literature. The following well known definitions may be obtained in Shaked and

Shanthikumar (2007).

Definition 2.1 Let X and Y be two absolutely continuous rvs with respective supports

(lX , uX) and (lY , uY ), where uX and uY may be positive infinity, and lX and lY may be

negative infinity. Then, X is said to be smaller than Y in usual stochastic (st) order,

denoted as X ≤st Y , if F̄X(t) ≤ F̄Y (t) for all t ∈ (−∞,∞).

It is well known that the results on different stochastic orders can be established

on using majorization order(s). Let In denote an n-dimensional Euclidean space where

I ⊆ <. Further, let x = (x1, x2, . . . , xn) ∈ In and y = (y1, y2, . . . , yn) ∈ In be any

two real vectors with x(1) ≤ x(2) ≤ · · · ≤ x(n) being the increasing arrangements of the

components of the vector x. The following definitions on vector majorization may be

found in Marshall et al. (2008).

Definition 2.2 i) The vector x is said to majorize the vector y (written as x
m

� y)

if
j∑
i=1

x(i) ≤
j∑
i=1

y(i), j = 1, 2, . . . , n− 1, and
n∑
i=1

x(i) =
n∑
i=1

y(i).

ii) The vector x is said to weakly supermajorize the vector y (written as x
w

� y) if

j∑
i=1

x(i) ≤
j∑
i=1

y(i) for j = 1, 2, . . . , n.

iii) The vector x is said to weakly submajorize the vector y (written as x �w y) if

n∑
i=j

x(i) ≥
n∑
i=j

y(i) for j = 1, 2, . . . , n.

It is easy to show that x
m

� y⇒ x
w

� y.
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Definition 2.3 A function ψ : In → < is said to be Schur-convex (resp. Schur-concave)

on In if

x
m

� y implies ψ (x) ≥ (resp. ≤) ψ (y) for all x, y ∈ In.

The following definitions related to matrix majorization may be found in Marshall et al.

[?].

Definition 2.4 i) A square matrix Πn, of order n, is said to be a permutation matrix

if each row and column has a single entry as 1, and all other entries as zero.

ii) A square matrix P = (pij), of order n, is said to be doubly stochastic if pij ≥ 0, for

all i, j = 1, ...n,
∑n

i=1 pij = 1, j = 1, ..., n and
∑n

j=1 pij = 1, i = 1, ..., n.

iii) A square matrix Tn, of order n, is said to be T−transform matrix if it has the form

Tn = λIn + (1− λ)Πn; 0 ≤ λ ≤ 1,

where In is the identity matrix and Πn is the permutation matrix.

Definition 2.5 Consider the m × n matrices A = {aij} and B = {bij} with rows

a1, ..., am and b1, ...,bm, respectively.

i) A is said to be larger than B in chain majorization, denoted by A >> B, if there

exists a finite set of n×n T−transform matrices T1, ..., Tk such that B = AT1T2...Tk.

ii) A is said to majorize B, denoted by A > B, if A = BP , where the n × n matrix

P is doubly stochastic. Since a product of T−transforms is doubly stochastic, it

follows that A >> B ⇒ A > B.

iii) A is said to be larger than the matrix B in row majorization, denoted by A >row B,

if ai

m

� bi for i = 1, ...,m. It is clear that A > B ⇒ A >row B.

iv) A is said to be larger than the matrix B in row weakly majorization, denoted by

A >w B, if ai

w

� bi for i = 1, ...,m. It is clear that A >row B ⇒ A >w B.

Thus it can be written that

A >> B ⇒ A > B ⇒ A >row B ⇒ A >w B.

Notation 2.1 Let us introduce the following notations.
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(i) D+ = {(x1, x2, . . . , xn) : x1 ≥ x2 ≥ . . . ≥ xn > 0}.

(ii) E+ = {(x1, x2, . . . , xn) : 0 < x1 ≤ x2 ≤ . . . ≤ xn}.

(iii) Un =

{
(x,y) =

[
x1 x2 . . . xn

y1 y2 . . . yn

]
: (xi − xj)(yi − yj) ≥ 0; i, j = 1, 2, . . . n

}
.

(iv) Vn =

{
(x,y) =

[
x1 x2 . . . xn

y1 y2 . . . yn

]
: (xi − xj)(yi − yj) ≤ 0; i, j = 1, 2, . . . n

}
.

Let us first introduce the following lemmas which will be used in the next section to

prove the results.

Lemma 2.1 (Lemma 3.1 of Kundu et al. (2016)) Let ϕ : D+ → < be a function, con-

tinuously differentiable on the interior of D+. Then, for x,y ∈ D+,

x
m

� y implies ϕ(x) ≥ (resp. ≤) ϕ(y)

if, and only if,

ϕ(k)(z) is decreasing (resp. increasing) in k = 1, 2, . . . , n,

where ϕ(k)(z) = ∂ϕ(z)/∂zk denotes the partial derivative of ϕ with respect to its kth

argument. 2

Lemma 2.2 (Lemma 3.3 of Kundu et al. (2016)) Let ϕ : E+ → < be a function, con-

tinuously differentiable on the interior of E+. Then, for x,y ∈ E+,

x
m

� y implies ϕ(x) ≥ (resp. ≤) ϕ(y)

if, and only if,

ϕ(k)(z) is increasing (resp. decreasing) in k = 1, 2, . . . , n,

where ϕ(k)(z) = ∂ϕ(z)/∂zk denotes the partial derivative of ϕ with respect to its k-th

argument. 2

Lemma 2.3 (Theorem A.8 of Marshall et al. (2011) p.p. 87) Let S ⊆ <n. Further, let

ϕ : S → < be a function. Then for x, y ∈ S,

x �w y =⇒ ϕ (x) ≥ (resp. ≤)ϕ (y)

if, and if, ϕ is both increasing (resp. decreasing) and Schur-convex (resp. Schur-concave)

on S. Similarly,

x
w

� y =⇒ ϕ (x) ≥ (resp. ≤)ϕ (y)

if, and if, ϕ is both decreasing (resp. increasing) and Schur-convex (resp. Schur-concave)

on S.
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3 Main Results

For i = 1, 2, . . . , n, let Ti (resp. Wi) be n independent nonnegative rvs following

Kw-G distribution as given in (??). Under random shock, let us assume Xi = TiIi and

Yi = WiI
∗
i , the cdf of Xi and Yi are given by

FXi(x) = 1− P (TiIi ≥ t) = 1− P (TiIi ≥ t | Ii = 1)P (Ii = 1) = 1− pi (1− (F (x))αi)βi

and

FYi(x) = 1−P (WiI
∗
i ≥ t) = 1−P (WiI

∗
i ≥ t | I∗i = 1)P (I∗i = 1) = 1− p∗i (1− (F (x))γi)δi

respectively, where E(Ii) = pi and E(I∗i ) = p∗i .

If FXn:n (·) (GYn:n (·)) and FX1:n (·)
(
GY1:n (·)

)
be the cdf and the survival function of

Xn:n(Yn:n) and X1:n(Y1:n) respectively, where α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn),

γ = (γ1, γ2, . . . , γn) and δ = (δ1, δ2, . . . , δn), then from (??) it can be written that

FXn:n (x) =
n∏
i=1

FXi (x) =
n∏
i=1

[
1− pi (1− (F (x))αi)βi

]
, (3.1)

and

GYn:n (t) =
n∏
i=1

FYi (x) =
n∏
i=1

[
1− p∗i (1− (F (x))γi)δi

]
.

The first two theorems show that usual stochastic ordering exists between the largest

order statistics of two independent and heterogeneous samples with associated random

shocks for fixed α. Theorem ?? (Theorem ??) guarantees that the largest order statistic

of sample 1 is stochastically larger than that of sample 2 with common heterogeneous

shape parameter vectors (common α), when the shock parameter vector (shape param-

eter vector β) of sample 1 majorizes that of sample 2.

Theorem 3.1 For i = 1, 2, . . . , n, let Ti and Wi be two sets of mutually independent

random variables with Ti ∼Kw−G (αi, βi, F ) and Wi ∼Kw−G (αi, βi, F ). Further, sup-

pose that Ii (I∗i ) be a set of independent Bernoulli rvs, independent of Ti’s (Wi’s) with

E(Ii) = pi (E(I∗i ) = p∗i ), i = 1, 2, ..., n. If h : [0, 1] → <+ is a differentiable, decreasing,

and strictly convex function, then h(p)
w

� h(p∗) implies Xn:n ≥st Yn:n if (α,β) ∈ Vn and

(β,h(p)) , (β,h(p∗)) ∈ Un, where h(p) = (h (p1) , h (p2) , . . . , h (pn)).

Proof: In view of the expression (??)

FXn:n (x) =
n∏
i=1

[
1− h−1(ui) (1− (F (x))αi)βi

]
= Ψ(u,α,β)(say),
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where h(pi) = ui. Differentiating Ψ(u) partially, with respect to ui, we get

∂Ψ

∂ui
=

[
−dh

−1(ui)

dui
(1− (F (x))αi)βi

] n∏
k 6=i=1

[
1− h−1(uk) (1− (F (x))αk)βk

]
≥ 0,

since h(u) is decreasing in u. So, Ψ is increasing in each ui. Again,

∂Ψ

∂ui
− ∂Ψ

∂uj

sign
=

[{
−dh

−1(uj)

duj
(1− (F (x))αj)βj

}{
1− h−1(ui) (1− (F (x))αi)βi

}]
−
[{
−dh

−1(ui)

dui
(1− (F (x))αi)βi

}{
1− h−1(uj) (1− (F (x))αj)βj

}]
.

(3.2)

Considering the fact that, (α,β) ∈ Vn and (β,h(p)) ∈ Un, for i ≤ j, let us consider

αi ≥ αj, βi ≤ βj and ui ≤ uj. So, for all x ≥ 0 it can be written that (1− (F (x))αi)βi ≥
(1− (F (x))αj)βj .

Again, as h(u) is decreasing and convex in u, ui ≤ uj gives dh−1(ui)
dui

≤ dh−1(uj)

duj
, which

yields

− (1− (F (x))αi)βi
dh−1(ui)

dui
≥ − (1− (F (x))αj)βj

dh−1(uj)

duj
. (3.3)

Again, as ui ≤ uj and h(u) is decreasing in u, it is easy to show that h−1(ui) ≥ h−1(uj),

which in turn implies that

1− h−1(ui) (1− (F (x))αi)βi ≤ 1− h−1(uj) (1− (F (x))αj)βj . (3.4)

Substituting the results (??) and (??) in (??), we get ∂Ψ
∂ui
− ∂Ψ

∂uj
≥ 0. Thus by Lemma ??

it can be proved that Ψ is Schur-concave in u.

Again, for i ≤ j, if αi ≤ αj, βi ≥ βj and ui ≥ uj are taken, then proceeding in the same

line and using Lemma ??, it can be proved that Ψ is Schur-concave in u.

Thus the result is proved by Lemma ??. 2

Theorem 3.2 For i = 1, 2, . . . , n, let Ti and Wi be two sets of mutually independent

random variables with Ti ∼Kw−G (α, βi, F ) and Wi ∼Kw−G (α, δi, F ). Further, suppose

that Ii be a set of independent Bernoulli rvs, independent of Ti’s (Wi’s) with E(Ii) =

pi, i = 1, 2, ..., n. If h : [0, 1] → <+ is a differentiable, and decreasing function, then

β
w

� δ implies Xn:n ≥st Yn:n if (β,h(p)) , (δ,h(p)) ∈ Un.

Proof: From (??), let us assume that

Ψ1(β,h(p)) =
n∏
i=1

[
1− h−1(ui) (1− (F (x))α)βi

]
,
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where h(pi) = ui. Differentiating Ψ1 partially, with respect to βi we get

∂Ψ1

∂βi
=
[
−h−1(ui) (1− (F (x))α)βk log (1− (F (x))α)

] n∏
k 6=i=1

[
1− h−1(uk) (1− (F (x))α)βk

]
≥ 0.

So, Ψ1 is increasing in each βi. Again, it can be shown that

∂Ψ1

∂βi
−∂Ψ1

∂βj

sign
=

[
h−1(uj) (1− (F (x))α)βj log (1− (F (x))α)

1− h−1(uj) (1− (F (x))α)βj
− h−1(ui) (1− (F (x))α)βi log (1− (F (x))α)

1− h−1(ui) (1− (F (x))α)βi

]
.

(3.5)

Now,

∂

∂β

(
(1− (F (x))α)β

1− h−1(u) (1− (F (x))α)β

)
sign
= (1− (F (x))α)β log (1− (F (x))α) ≤ 0,

implying that (1−(F (x))α)β

1−h−1(u)(1−(F (x))α)β
is decreasing in β. Again, as h(u) is decreasing in u,

then
∂

∂u

(
h−1(u)

1− h−1(u) (1− (F (x))α)
β

)
=
∂h−1(u)

∂u
≤ 0,

giving that h−1(u)

1−h−1(u)(1−(F (x))α)β
is decreasing in u. Thus, as (β,h(p)) ∈ Un, for i ≤ j

taking β≤βj and ui ≤ uj and noticing the fact that h−1(u) is decreasing in u, it can be

written that

h−1(uj) (1− (F (x))α)βj

1− h−1(uj) (1− (F (x))α)βj
≤ h−1(uj) (1− (F (x))α)βi

1− h−1(uj) (1− (F (x))α)βi
≤ h−1(ui) (1− (F (x))α)βi

1− h−1(ui) (1− (F (x))α)βi
,

which implies

h−1(uj) (1− (F (x))α)βj log (1− (F (x))α)

1− h−1(uj) (1− (F (x))α)βj
≥ h−1(ui) (1− (F (x))α)βi log (1− (F (x))α)

1− h−1(ui) (1− (F (x))α)βi
.

Hence, from (??), we get ∂Ψ1

∂βi
− ∂Ψ1

∂βj
≥ 0. Thus by Lemma ?? it can be proved that Ψ is

Schur-concave in u. Again, for i ≤ j, if βi ≥ βj and ui ≥ uj are taken, then also using

Lemma ??, it can be proved that Ψ is Schur-concave in u.

Thus the result is proved by Lemma ??. 2

Now the question arises− what will happen if the matrix of the shape (β) and the

shock parameters of one sample majorizes the other when the other shape parameter (α)

remains constant? The theorem given below answers that the majorized matrix of the

parameters leads to better performance of the sample. Combining Theorems ?? and ??,

the following theorem can be obtained.
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Theorem 3.3 For i = 1, 2, . . . , n, let Ti and Wi be two sets of mutually independent

random variables with Ti ∼Kw−G (α, βi, F ) and Wi ∼Kw−G (α, δi, F ). Further, suppose

that Ii (I∗i ) be a set of independent Bernoulli rvs, independent of Xi’s (Yi’s) with E(Ii) =

pi (E(I∗i ) = p∗i ), i = 1, 2, ..., n and h : [0, 1] → <+ is a differentiable, decreasing and

convex function. If (β,h(p)) ∈ Un, and (δ,h(p∗)) ∈ Un, then[
h(p)

β

]
>w

[
h(p∗)

δ

]
implies Xn:n ≥st Yn:n.

The Counterexample, given below shows that the conditions (β,h(p)) ∈ Un, and (δ,h(p∗)) ∈
Un are necessary conditions for the result of Theorem ?? to hold.

Counterexample 3.1 For fixed α = 2.0 and h(p) = − log(p), let β = (3, 2, 1), δ =

(2.5, 2.5, 1), h(p) = (1, 2, 3) and h(p∗) = (1, 2.5, 2.5). So, (β,h(p)) ∈ Vn, and (δ,h(p∗)) ∈
Vn and [

h(p)

β

]
>w

[
h(p∗)

δ

]
.

But, Figure ?? shows there exists no stochastic ordering between Xn:n and Yn:n.

      

 

0.2 0.4 0.6 0.8 1.0

0.010

0.005

0.005

0.010

0.015

x 

Figure 1: Graph of F3:3(x)−G3:3(x)

The next result can be easily concluded from the previous theorem.

Theorem 3.4 For i = 1, 2, . . . , n, let Ti and Wi be two sets of mutually independent

random variables with Ti ∼Kw−G (α, βi, F ) and Wi ∼Kw−G (α, δi, F ). Further, suppose

that Ii (I∗i ) be a set of independent Bernoulli rvs, independent of Xi’s (Yi’s) with E(Ii) =
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pi (E(I∗i ) = p∗i ), i = 1, 2, ..., n and h : [0, 1] → <+ is a differentiable, decreasing and

convex function. If (β,h(p)) ∈ Un, and (δ,h(p∗)) ∈ Un, then[
h(p)

β

]
>>

[
h(p∗)

δ

]
implies Xn:n ≥st Yn:n.

Although Theorem ?? shows that there exists stochastic ordering between Xn:n and Yn:n

when (β,h(p)) and (δ,h(p∗)) are ordered in the sense of row weakly majorization, the

next counterexample shows that no such ordering exists between Xn:n and Yn:n when

(α,h(p)) and (α∗,h(p∗)) are ordered in the same sense, keeping β as fixed.

Counterexample 3.2 For β = 0.01 and h(p) = − log(p), let α = (1, 2, 30), α∗ =

(3, 5, 25), h(p) = (0.3, 0.2, 0.1) and h(p∗) = (0.25, 0.25, 0.1). So, clearly (α,h(p)) ∈ Vn,

(α∗,h(p∗)) ∈ Vn and [
h(p)

α

]
>w

[
h(p∗)

α∗

]
.

But, Figure ??(a) shows that there exists no stochastic ordering between X3:3 and Y3:3.

Again for the same β and h(p), if α = (1, 2, 30), α∗ = (3, 5, 25), h(p) = (0.1, 0.2, 0.3)

and h(p∗) = (0.1, 0.25, 0.25) are taken then clearly (α,h(p)) ∈ Un, (α∗,h(p∗)) ∈ Un
and [

h(p)

α

]
>w

[
h(p∗)

α∗

]
.

But, Figure ??(b) shows that there exists no stochastic ordering between X3:3 and Y3:3.
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(a) For (α,h(p)), (α∗,h(p∗)) ∈ Vn

        

 

0.2 0.4 0.6 0.8 1.0

0.0002
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0.0008

0.0010

x 

(b) For (α,h(p)), (α∗,h(p∗)) ∈ Un

Figure 2: Graph of F3:3(x)−G3:3(x)
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Next, we compare the largest order statistics of two heterogeneous samples from

Kw-G random variables with different homogenous parent cdfs. Let X1 and X2 be

two random variables with continuous distribution functions F1(·) and F2(·) and density

functions f1(·) and f2(·) respectively. Also suppose that Ti ∼ Kw-G(αi, βi, F1) and

Wi ∼ Kw-G(γi, δi, F2) (i = 1, 2, . . . , n) be two sets of n independent random variables.

Therefore, for all x ≥ 0

FXn:n (x) =
n∏
i=1

[
1− pi (1− (F1(x))αi)βi

]
, (3.6)

and

GYn:n (t) =
n∏
i=1

[
1− p∗i (1− (F2(x))γi)δi

]
.

The next theorems also show that under certain conditions on parameters, usual stochas-

tic ordering between X1 and X2 implies the same between Xn:n and Yn:n.

Theorem 3.5 For i = 1, 2, . . . , n, let Ti and Wi be two sets of mutually independent

random variables with Ti ∼Kw−G (αi, βi, F1) and Wi ∼Kw−G (αi, βi, F2). Further, sup-

pose that Ii (I∗i ) be a set of independent Bernoulli rvs, independent of Ti’s (Wi’s) with

E(Ii) = pi (E(I∗i ) = p∗i ), i = 1, 2, ..., n. If h : [0, 1] → <+ is a differentiable, decreasing,

and strictly convex function, then X1 ≥st X2 and h(p)
w

� h(p∗) implies Xn:n ≥st Yn:n

for (α,β) ∈ Vn and (β,h(p)) , (β,h(p∗)) ∈ Un.

Proof: Let us consider another random variable Zi such that Zi ∼Kw-G(αi, βi, F1).

As (α,β) ∈ Vn and (β,h(p)) , (β,h(p∗)) ∈ Un, from Theorem ??, it can be shown that

h(p)
w

� h(p∗) implies Xn:n ≥st Zn:n. Thus, by the definition of usual stochastic ordering,

it can be written that

n∏
i=1

[
1− h−1(ui) (1− (F1(x))αi)βi

]
≤

n∏
i=1

[
1− h−1(u∗i ) (1− (F1(x))αi)βi

]
. (3.7)

Now, X1 ≥st X2 implies F1(x) ≤ F2(x) ∀x, which yields (1− (F1(x))αi)βi ≥ (1− (F2(x))αi)βi ,

which in turn implies that

1− h−1(u∗i ) (1− (F1(x))αi)βi ≤ 1− h−1(u∗i ) (1− (F2(x))αi)βi . (3.8)

So from (??) and (??) it can be written that

n∏
i=1

[
1− h−1(ui) (1− (F1(x))αi)βi

]
≤

n∏
i=1

[
1− h−1(u∗i ) (1− (F2(x))αi)βi

]
.

This proves the result. 2
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Theorem 3.6 For i = 1, 2, . . . , n, let Ti and Wi be two sets of mutually independent ran-

dom variables with Ti ∼Kw−G (α, βi, F1) and Wi ∼Kw−G (α, δi, F2). Further, suppose

that Ii be a set of independent Bernoulli rvs, independent of Ti’s (Wi’s) with E(Ii) =

pi, i = 1, 2, ..., n. If h : [0, 1] → <+ is a differentiable, and decreasing function, then

X1 ≥st X2, and β
w

� δ implies Xn:n ≥st Yn:n if (β,h(p)) , (δ,h(p)) ∈ Un.

Proof: Considering Zi ∼Kw-G(α, δi, F1), and using the same logic as in Theorem ??

the result can be proved with the help of Theorem ??. 2

Combining Theorems ?? and ??, the following theorem on row weakly majorization is

obtained.

Theorem 3.7 For i = 1, 2, . . . , n, let Ti and Wi be two sets of mutually independent

random variables with Ti ∼Kw−G (α, βi, F1) and Wi ∼Kw−G (α, δi, F2). Further, sup-

pose that Ii (I∗i ) be a set of independent Bernoulli rvs, independent of Xi’s (Yi’s) with

E(Ii) = pi (E(I∗i ) = p∗i ), i = 1, 2, ..., n and h : [0, 1] → <+ is a differentiable, decreasing

and convex function. If (β,h(p)) ∈ Un, and (δ,h(p∗)) ∈ Un, then X1 ≥st X2, and[
h(p)

β

]
>w

[
h(p∗)

δ

]
implies Xn:n ≥st Yn:n.

The next result is an immediate consequence of the previous theorem.

Theorem 3.8 For i = 1, 2, . . . , n, let Ti and Wi be two sets of mutually independent

random variables with Ti ∼Kw−G (α, βi, F1) and Wi ∼Kw−G (α, δi, F2). Further, sup-

pose that Ii (I∗i ) be a set of independent Bernoulli rvs, independent of Xi’s (Yi’s) with

E(Ii) = pi (E(I∗i ) = p∗i ), i = 1, 2, ..., n and h : [0, 1] → <+ is a differentiable, decreasing

and convex function. If (β,h(p)) ∈ Un, and (δ,h(p∗)) ∈ Un, then X1 ≥st X2, and[
h(p)

β

]
>>

[
h(p∗)

δ

]
implies Xn:n ≥st Yn:n.

4 Application

The implications of the results as derived in the previous section are explained here

with the help of one application. The application is provided considering Weibull as the

parent cdf of the Kw-G distribution. Cordeiro et al. (2011) have shown that the Kw-W

distribution fits lifetime data better than some known existing lifetime distributions such
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as generalized Weibull, generalied exponential and Weibull distributions. The data, as

taken from Meeker and Escobar (1998) is described as the times of failure and running

times for a sample of devices from a field-tracking study of a larger system. At a certain

point in time, thirty units were installed in normal service conditions. Two causes of

failure were observed for each unit that failed: the failure caused by an accumulation of

randomly occurring damage from power-line voltage spikes during electric storms and the

failure caused by normal product wear. The Kw-W distribution is found to perform best

in terms of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)

and Consistent Akaike Information Criterion (CAIC) along with Kolmogorov-Smirnov

(K-S) distance. The following application of Kw-W distribution as a lifetime model ex-

plains the implication of the results.

Suppose there are two parallel systems consisting of n independent and heteroge-

neous components each. We are interested to compare the performance of the systems

stochastically when each component of the systems experiences a random shock which

may cause the component(s) to fail. Assume further that the lifetimes of the components

are distributed as Kw-W with cdf of the ith component as given by

G(x) = 1− [1− {1− exp(−(λx)γ)}αi ]βi , x > 0, αi, βi, λ, γ > 0 ∀ i = 1, 2, ..., n. (4.1)

Following equation (??), let Ti and Wi (i = 1, 2, ..., n) be the lifetime of the ith com-

ponent of the systems 1 and 2 respectively with Ti ∼Kw-W(α, βi, λ, γ) and Wi ∼Kw-

W(α, δi, θ, γ). Now, each component of the systems 1 and 2 receives a shock at ran-

dom which may cause the component to fail with probability pi and p∗i respectively. If

Ii denote independent Bernoulli rvs, independent of the Tis, with E(Ii) = pi, the rv

Xi = IiTi corresponds to the lifetime of the ith component of the system 1 under shock.

Theorem ?? guarantees that for parallel systems of components having independent Kw-

Weibull distributed lifetimes with one of the shape parameter (α) vector common, the

other majorized shape and shock parameter vectors lead to a larger systems lifetime in

usual stochastic ordering for
(
λ
θ

)γ ≤ 1. In other words, for fixed parameter vector α, if

the shape and shock parameter vectors (β,h(p)) of system 1 are more dispersed than the

same (δ,h(p∗)), of system 2 (although average is the same for both the vectors), then

the lifetime of system 1 will be larger than that of system 2 keeping the other conditions

same as mentioned earlier.

5 Concluding Remarks

Parallel systems (maximum order statistic) being one of the building blocks of

many complex coherent systems are always required to be compared stochastically in the
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context of reliability optimization and life testing experiments. Such comparisons are

generally carried out with the assumption that the components of the system fail with

certainty. In practice, the components may experience random shocks which eventually

doesn’t guarantee its failure. This paper compares the maximum order statistics of two

independent and heterogeneous samples from Kw-G distribution with associated random

shock. It is proved that for two samples with common shape parameter vector (α), the

majorized matrix of the shape (β) and shock parameters (h(p)) leads to better system

reliability. It is also shown through counter examples that no such results exist when the

matrix of shape (α) and shock parameters (h(p)) of one system majorizes the same of the

other for fixed β. The results of this paper are applicable to a wide variety of distributions

generated from Kw distribution through the cdf F as discussed in the Introduction, viz.

Kw-N, Kw-W, Kw-Ga, Kw-Gu etc. Results related to ordering properties of maximum

order statistics of two independent and heterogeneous samples from Kw-G distribution

can be easily derived from the current results by taking p1 = p2 = ... = pn.
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